วันจันทร์ที่ 5 ธันวาคม พ.ศ. 2559

พลศาสตร์ของไหล


กลศาสตร์ภาวะต่อเนื่อง
BernoullisLawDerivationDiagram.svg
สมการนาเวียร์-สโตกส์
จัดการ: แม่แบบ  พูดคุย  แก้ไข
พลศาสตร์ของไหล[1](อังกฤษFluid dynamics) เป็นสาขาวิชาการย่อยของกลศาสตร์ของไหล ที่ศึกษาการเคลื่อนที่ของของไหล ซึ่งหมายรวมถึงของเหลวและแก๊ส โดยพลศาสตร์ของไหลยังแบ่งแยกย่อยออกเป็นหลายสาขาวิชา เช่น อากาศพลศาสตร์ ที่ศึกษาการเคลื่อนที่ของอากาศ และพลศาสตร์ของเหลวที่ศึกษาการเคลื่อนที่ของของเหลว เราใช้พลศาสตร์ของไหลในหลายวิธี เช่นในการคำนวณแรงและโมเมนต์บนอากาศยาน ในการหาอัตราการไหลของมวลของปิโตรเลียมผ่านท่อ คาดคะเนแบบรูปของสภาพอากาศ ทำความเข้าใจเนบิวลาและสสารระหว่างดาว ตลอดจนงานคอมพิวเตอร์กราฟิกส์

เนื้อหา

  [ซ่อน

โมเดลของของไหลในอุดมคติ (Ideal Fluid Model)[แก้]

ของไหลในอุดมคติ คือ ของไหลที่มีความสมบูรณ์แบบที่ทำให้วิเคราะห์ง่าย แต่เป้นของไหลที่หายากในความเป็นจริงจึงเป้นของไหลในอุดมคติโดยการประมาณเท่านั้น ของไหลในอุดมคติมีคุณสมบัติต่อไปนี้คือ
1.เป็นของไหลที่ใช้ความดันกดให้ปริมาตรลดลงไม่ได้ ทั้งนี้หมายความว่าความหนาแน่นของของไหลไม่ขึ้นอยู่กับความดัน และของเหลวแทบทั้งหมดมีความหนาแน่นที่ไม่เปลี่ยนค่าไปตามความดัน
2.การไหลเป็นไปอย่างสม่ำเสมอ หมายความว่าความเร็วของของไหลที่จุดใดๆภายในของไหลมีค่าคงที่ ณ จุดนั้นๆแต่ถ้าเราเปลี่ยนที่จากจุดหนึ่งไปยังอีกจุดภายในของไหล ความเร็วอาจเปลี่ยนไปได้ แต่ความเร็วที่จุดใดๆก็ตามจะต้องมีค่าคงที่สม่ำเสมอ
3.การไหลไม่หมุนวน หมายความว่าของไหลไม่มีความเร็วเชิงมุม
4.ของไหลไม่มีความหนืดระหว่างชั้นของไหลที่ติดกัน

สมการต่อเนื่อง Equation of continuity[แก้]

การเคลื่อนที่ของของไหลด้วยวิธีการเขียนเวกเตอร์ความเร็วของของไหลที่แต่ละจุด มีความยาวของเวกเตอร์แทนอัตราเร็วของการไหลและทิศทางของเวกเตอร์แทนทิศทางการไหล หรืออีกวิธีหนึ่งคือการเขียนที่เราเรียกว่า สายกระแส ซึ่งคือเส้นสัมผัสกับทิศทางของความเร็ว ระยะช่องไฟระหว่างแต่ละเส้นในสายกระแสเป็นตัวระบุความมากน้อยของอัตราของการไหล ถ้าช่องไฟแคบแสดงว่าอัตราเร็วของการไหลมีค่าสุง และช่องไฟระหว่างเส้นห่างกันมากแสดงว่ามีอัตราการไหลต่ำ สำหรับการไหลแบบสม่ำเสมอ เส้นในสายกระแสจะไม่เปลี่ยนแปลง
สมการต่อเนื่องนี้เป็นผลสืบเนื่องของอนุรักษ์มวล สำหรับการไหลที่มีค่าความหนาแน่นคงที่ และไม่เปลี่ยนแปลงไปตามค่าความดัน

สมการทอนลงมาเป็น
 คงที่

สมการเบอร์นูลี Bernoulli’s Equation[แก้]

การใช้หลักการของการอนุรักษ์มวลวิเคราะห์การไหลของของไหลในท่อทำให้เราเข้าใจความสัมพันธ์ระหว่างอัตราเร็วและพื้นที่หน้าตัด และเราได้ความสัมพันธ์ที่เรียกว่าสมการต่อเนื่อง ในหัวข้อต่อไปเราจะใช้หลักการอนุรักษ์พลังงานวิเคราะห์การไหลของของไหล เพื่อที่จะใช้หลักการอนุรักษ์พลังงานคือ
ซึ่งมีความหมายว่าการถ่ายโอนพลังงานคิดได้จากงาน w ซึ่งมีค่าเท่ากับผลบวกของการเปลี่ยนแปลงของพลังงานจลน์และพลังงานศักย์ของของไหลที่ไหลในท่อ
ของไหลเคลื่อนที่ไปตามท่อตามแนวราบที่ปลายล่างและปลายบน
ตามรูปข้างบนแรงภายนอกที่กระทำต่อของไหลที่อยู่ระหว่าพื้นที่หน้าตัดในระนาบ x และ y มีสองแรงคือ แรงF1 จากของไหลที่อยุ่ทางด้านซ้ายมือคือ พื้นที่ของพื้นที่ A2 อีกแรงหนึ่ง และρ1 เป็นความดันของของไหลที่กระทำต่อพื้นที่
ในเมื่อ ρ1 เป็นความดันของของไหลที่กระทำต่อพื้นที่ A1 ทางด้านซ้ายมือ และ
ในเมื่อ ρ2 เป็นความดันของของไหลที่กระทำต่อพื้นที่ A2 จากทางด้านขวามือ แรงภายนอกที่ว่านี้ทำให้ของไหลซึ่งอยุ่ระหว่างพื้นที่หน้าตัดที่ xและ y ย้ายไปอยู่ระหว่างพื้นที่หน้าตัด x’ และ y’ ตามลำดับ ภายในช่วงเวลา∆ t แรง F1ดันของไหลที่พื้นที่ A1ให้ปลายล่างของไหลเคลื่อนที่ตามแนวระดับได้เป็นระยะสูงสุด ∆L1 ดังนั้น งานหรือพลังงานที่ถ่ายโอนให้ของไหลในช่วงที่พิจารณาเท่ากับ
ภายใน∆t เดียวกัน ของไหลในท่อถูกดันทำให้ส่วนปลายด้านบนเคลื่อนที่ ตามแนวระดับได้เป็นระยะทางสุงสุด ∆x2 ดังนั้นพลังงานที่ถ่ายโอนมีค่าเท่ากับ
เนื่องจาก F2 มีทิศทางตรงกันข้ามกับ∆x2 งาน W2จึงมีเครื่องหมายลบ หมายความว่าของไหลในช่วงที่เราพิจารณาเสียพลังงาน
ดังนั้นของไหลในช่วงที่เราพิจารณาเสียพลังงาน W ซึ่งมีค่าเท่ากับ
เนื่องจากความหนาแน่นไม่ได้เปลี่ยนไปจากความดัน
ในเมื่อ∆V เป็นปริมาตรของของไหลระหว่างระนาบ X และ Y’ ดังนั้น
ถ้า ∆m เป็นมวลของปริมาตร∆V
V2 เป็นค่าความเร็วของมวล ∆m ที่เคลื่อนที่ออกจากท่อผ่านพื้นA2
V1 เป็นค่าความเร็วของมวล∆m ที่เคลื่อนที่ผ่านออกจากท่อผ่านพื้นA1
ดังนั้น พลังงานจลน์ที่เปลี่ยนไปของของไหลในท่อคือ ∆k
และ
และ พลังงานศักย์ที่เปลี่ยนไป

ในเมื่อ h1และ h2 เป็นความสุงสุดของจุดศูนย์กลางของพื้นที่ A2และA1 วัดจากระดับพื้นตามแนวราบพลังงานที่ถ่ายโอนนี้มีค่าเท่ากับการเปลี่ยนแปลงของพลังงานรวม (พลังงานจลน์+พลังงานศักย์) เราสามารถจัดรูปได้ใหม่เป็น
สมการมีชื่อเรียกว่า สมการเบอร์นูลลี เพื่อเป็นเกียรติแก่ Daniel Bernoulli นักวิทยาสตร์ชาวสวิสผู้ก่อตั้งสมการนี้เป็นคนแรกซึ่งช่วยให้เราเข้าใจปรากฏการณ์ธรรมชาติ และหลักการบินของเครื่องบินแบบต่างๆตลอดไปจนถึงการบินของนก

การบินและแรงยก Flight and Lift[แก้]

แสดงสายกระแสรอบปีกเครื่องบิน
เครื่องบินทั่วๆไปรวมทั่งเครื่องบินเฮลิคอร์ปเตอร์ตลอดไปจนถึงนก อาศัยแรงดันบรรยากาศที่ได้มาจตาหลักการของสมการเบอร์นูลลี หรือตามหลักการของปรากฏการณ์เบอร์นูลลี นอกจากเครื่องบินและนก เรือต่างๆ เช่น เรือไฮโดรฟอยล์ เรือฮเวอร์คราฟท์หรือแม้แต่เรือใบหาปลายังได้อาศัยยังได้อาศัยปรากฏการณ์เบอร์นูลลีที่เป็นการทำกิริยาระหว่างเรือกับน้ำ อีกทั้งวัตถุโปรเจกไตล์ เช่น ลูกกอล์ฟลูกฟุตบอลที่สามารถเลี้ยวโค้ง หรือ ไซ้โค้ง ได้อย่างน่าประหลาด สามรถอธิบายตามสมการเบอร์นูลลีได้ว่า การที่ปีกของเครื่องบินถูกออกแบบให้พื้นที่ผิวด้านบนเป็นผิวโค้งออก ทำให้กระแสอากาศเหนือปีกเคลื่อนที่ด้วยความเร็วสูงกว่ากระแสอากาศใต้ปีก ในรูปแสดงสายกระแสด้านบนอยู่ชิดกันมากกว่ากระแสอากาศใต้ปีก ตามหลักของสมการเบอร์นุลลีความดันใต้ปีกมีค่ามากว่าทำให้เกิดแรงยกที่ปีกและเครื่องบินทั้งลำลอยตัวอยู่ในอากาศได้ทั้งนี้สอดคล้องกับหลักการณ์ และทฤษฏีกฎข้อสามของนิวตัน กล่าวคือ จากการทำกิริยาระหว่างปีกเครื่องบินกับอากาศ กระแสอากาศผลักปีนขึ้นด้านบนยกเครื่องบินให้ลอยอยู่ในอากาศได้[5]

กลศาสตร์ของของไหล (Fluid mechanic)[แก้]

1.คุณสมบัติของของไหล ( Fluid property )
กลศาสตร์ของไหล เป็นสาขาหนึ่งของกลศาสตร์ประยุกต์ที่เกี่ยวข้องกับพฤติกรรมของของเหลวและก๊าซสาขาวิชานี้สามารถสามารถแบ่งออกได้เป็น
- สถิตศาสตร์ของไหล ( Fluid Statics ) คือของไหลที่ไหลอยู่กับที่ ได้แก่ การศึกษาความดันในของไหล หลักของพาสคาล หลักของอาร์คีมีดิส ความดึงผิว
- พลศาสตร์ของไหล ( Fluid Dynamics ) คือของไหลที่มีการเคลื่อนที่ ได้แก่ การศึกษาสมการต่อเนื่อง สมการของแบร์นูลลี ความหนืด การศึกษาทางด้านนี้สามารถประยุกต์ใช้ในการออกแบบ และแก้ไขปัญหาต่างๆ เช่น การไหลของน้ำดีและน้ำเสียการไหลของน้ำในระบบท่อดับเพลิง การระบายอากาศ การดูดควันหรือสารเคมีอันตรายออกจากพื้นที่ทำงาน เป็นต้น
2.ความหนาแน่น (Density )
ความหนาแน่น ( Density ) ของไหลนิยมใช้สัญลักษณ์ ρ หมายถึงมวลต่อหนึ่งหน่วยปริมาตร
เมื่อ
ρ คือความหนาแน่นของของไหล
มวลของของไหลหน่วยเป็น kg
v เป็นปริมาตรของของไหลหน่วยเป็น m3
3.ค่าปริมาตรจำเพาะ
ค่าปริมาตรจำเพาะ ( Specific volume, Vs ) คือค่าปริมาตรต่อหน่วยมวล ดังนั้นค่านี้จึงเทากับส่วนกลับของความหนาแน่น
เมื่อ
Vs= ปริมาตรจำเพาะของของไหลหน่วยเป็น m3/kg
ρ= ความหนาแน่นของของไหลหน่วยเป็น kg/m3
4. ค่าน้ำหนักจำเพาะ ค่าน้ำหนักจำเพาะ (Specific weight ) นิยามโดยใช้สัญลักษณ์ γ หมายถึง น้ำหนักต่อหน่วยปริมาตร
เมื่อ
γ= น้ำหนักจำเพาะของของไหลหน่วยเป็น N/m3
g= ค่าความเร่งเนื่องจากแรงโน้มถ่วงของโลกมีค่าเท่ากับ 9.81 m/s2
5. ค่าความถ่วงจำเพาะ ค่าความถ่วงจำเพาะ (Specific Gravity, SG ) หมายถึงอัตราส่วนระหว่างระหว่างความหนาแน่นของของไหลต่อความหนาแน่นของน้ำ ณ อุณหภูมิเดียวกัน และเนื่องจากเป็นอัตราส่วนค่าของ GS จึงไม่ขึ้นกับระบบหน่วยที่ใช้
เมื่อ
SG= ค่าความถ่วงจำเพาะ ไม่มีหน่วย
ρw=ค่าความหนาแน่นของน้ำ หน่วยเป็น kg/m3 =1.000 kg/m3
6.ความดันและกฎของพาสคาล ความดัน ( Pressure ,P ) เมื่อของไหลถูกบรรจุในภาชนะ ของไหลจะมีแรงกระทำในแนวตั้งฉากกับภาชนะ โดยอัตราส่วนระหว่างแรงดัน ( force of pressure, F) และพื้นที่ตั้งฉาก (normal area, A) กับแรงดัน
หน่วยของความดันในระบบเอสไอ คือ N/m2 แต่อาจจะมีหน่วยอื่นๆได้
6.1 ความดันในของไหลที่อยู่นิ่ง
ของไหลอยู่นิ่งจะมีคุณสมบัติ 4 ข้อที่เราต้องทำความเข้าใจ
ก. แรงดันจะตั้งฉากกับพื้นผิว ถ้าแรงดันไม่ตั้งฉากหรือทำมุมใดๆ กับพื้นที่ผิวของก้อนของไหล ให้แยกองค์ประกอบของแรงในแนวตั้งฉาก และขนานกับพื้นที่ดังรูป 9.1 ในกรณีแรงที่ตั้งฉากกับพื้นที่ของของเหลวจะทำให้เกิดทอร์คและเกิดการหมุน อย่างไรก็ตามเนื่องจากของไหลอยู่นิ่งแรงลัพธ์ที่กระทำที่ผิวจะมีค่าเป็นศูนย์
ทิศทางของแรงที่กระทำต่อพื้นที่ผิวของวัตถุ
ข. แรงดันต่อหน่วยพื้นที่มีค่าเท่ากันทุกๆจุดบนผิวนั้น พิจารณาก้อนของเหลวดังรูปที่ 9.2 จากกฎข้อสองของนิวตัน
แรงดันที่กระทำต่อพื้นผิววัตถุ
ค. ความดันในของไหลจะขึ้นอยู่กับความลึกเพียงอย่างเดียว
6.2 ความดันของเหลวขึ้นอยู่กับความลึกของของเหลว เมื่อเราเจาะรูภาชนะที่บรรจุของเหลวที่ระดับต่างๆ รอบๆภาชนะ จะเห็นว่ามีของเหลวพุ่งออกจากรูที่ระดับต่างๆ ได้ไกลไม่เท่ากัน ดังรูปที่ 9.4
การพุ่งของของเหลวออกจากภาชนะ
พิจารณาของเหลวที่มีความหนาแน่น ρ อยู่นิ่งในภาชนะปิด โดย สังเกตส่วนของเหลวรูปทรงกระบอกที่มีพื้นผิวด้านบนและล่างมีค่า A หนา dy อยู่ลึกจากผิวของเหลว y = h ดังรูปที่ 9.5 ที่ผิวของของเหลวมีความดันบรรยากาศ Pa ถ้าให้ความดันที่พื้นที่ผิวด้านบนของส่วนของเหลวนี้เป็น P กดลง PA ความดันที่พื้นที่ผิวด้านล่างของส่วนของเหลวนี้เป็น P+dP จะเกิดแรงดันขึ้น ( P+dP)A ส่วนแรงดันลัพธ์ด้านข้างมีค่าเป็นศูนย์เพราะมีขนาดเท่ากับทิศทางตรงข้าม และน้ำหนักของส่วนของเหลวนี้มีค่า
 เมื่อของเหลวอยู่ในสภาพสมดุลจะได้ว่า
ของเหลวออกแรงดันต่อก้นภาชนะ
เมื่อ Pa =ความดันบรรยากาศ (N/m2 )
ρ =ความหนาแน่นของเหลว
g=ความเร่งของแรงโน้มถ่วง (m/s2 )
h=ความลึกของของเหลว (m)
P=ความดันสัมบูรณ์ ( absolute pressure ) ที่ความลึก h (N/m2 ) นั้นคือ ที่ระดับความลึกเดียวกันในของเหลวชนิดเดียวกัน จะมีความดันเท่ากัน กำหนดให้ความดันเนื่องจากน้ำหนักของของเหลว เรียกว่าความดันเกจ (Gauge pressure:Pw) เป็นความดันเนื่องจากของเหลว ขึ้นกับความลึกและความหนาแน่นของของเหลว มีค่าเป็น
เมื่อมีความดันเนื่องจากของเหลว จะทำให้เกิดแรงดันทุกทิศทุกทางและตั้งฉากกับผนังภาชนะหรือผิววัตถุที่สัมผัสกับของเหลวเสมอ และระดับที่ระดับความลึกเท่ากันในของเหลวชนิดเดียวกันที่อยู่นิ่งและอุณหภูมิคงที่ จะมีความดันเท่ากันเสมอ และของเหลวในภาชนะเดียวกันที่ระดับเดียวกันย่อมมีความดันในของเหลวมีค่าเท่ากัน
6.3 หลักการและเครื่องมือวัดความดัน ความดันเป็นคุณสมบัติที่สำคัญมากอันหนึ่งของของไหล จึงมีอุปกรณ์อย่างถูกออกแบบและพัฒนามาเพื่อทำหน้าที่ในการตรวจวัดความดัน เครื่องมือวัดความดันอย่างง่ายๆ ซึ่งใช้ปรอทวัดความดันบรรยากาศ (Atmospheric pressure) เรียกว่า บารอมิเตอร์ (barometer) ดังแสดงในรูปที่ 9.6 อุปกรณ์ดังกล่าวจะมีปลายปิดข้างหนึ่ง เติมปรอทให้เต็มแล้วกลับหลอดให้ด้านปลายเปิดจุ่มลงในอ่างที่มีปรอท ปรอทจะไหลลงไปจากหลอดส่วนหนึ่ง แต่จะมีอีกส่วนหนึ่งยังคงค้างอยู่ โดยความดัน P_1ที่ด้านบนของหลอดจะมีค่าประมาณ 0 และเราจะได้ว่าความดันที่จุด A เนื่องจากความสูงของปรอทในหลอด จะเท่ากับความดันที่จุด B ซึ่งเป็นความดันบรรยากาศ ดังสมการ
บารอมิเตอร์
มานอมิเตอร์
เมื่อ h คือความสูงของปรอทในหลอด และเนื่องจากเราสามารถคำนวณความดันบรรยากาศได้จากความสูงของปรอทในบารอมิเตอร์ ดังนั้นในบางครั้งจึงมีการใช้หน่วยของความดันเป็น มิลิเมตรปรอท หรือบางครั้งเรียกว่า ทอร์ (torr) ความดันบรรยากาศที่ระดับน้ำทะเลจะมีค่าประมาณ 1×105 N/m2 หรือ 760 มิลลิเมตรปรอท หรือ 760 ทอร์ เครื่องมือวัดความดันอีกชนิดหนึ่งเรียกว่า มานอมิเตอร์ (Manometer) ซึ่งเป็นหลอดรูปตัว U ที่มีของเหลวบรรจุอยู่ (โดยมากจะเป็นปรอท) ปลายด้านหนึ่งต่อเข้ากับภาชนะซึ่งมีความดัน P2 ส่วนปลายอีกข้างหนึ่งเปิดให้อากาศเข้า ซึ่งมีความดันเป็น
P1= Patm ดังรูป 9.7
ถ้า P2>P1 จะทำให้ของเหลวด้านปลายเปิดสูงกว่าด้านปลายปิดถ้าจุด B เป็นจุดบนผิวของของเหลวที่อยู่ด้านปลายปิดและ จุด A เป็นจุดที่อยู่ในแนวระดับเดียวกับจุด B
(ดังนั้น PA=PB) เราจะได้ความสัมพันธ์ดังนี้
PA=PB
ความสูง h จะมีค่าเป็นสัดส่วนกับ ซึ่งค่า นี้เราเรียกว่า ความดันเกจ (Gauge Pressure ) ส่วนค่า P2ซึ่งเป็นค่าความดันเกจ บวกกับความดันบรรยากาศ เราเรียกว่า ความดันสัมบูรณ์ ( absolute pressure )

หลักการของปาสคาล ( Pascal’principle)[แก้]

“ เมื่อมีการเปลี่ยนแปลงความดันเกิดขึ้นที่ส่วนหนึ่งส่วนใดของไหล ความดันที่เปลี่ยนแปลงนั้นจะถ่ายทอดไปยังของไหลโดยรอบทั่วๆ ทุกส่วนของของไหลด้วยค่าที่เท่ากันตลอด” จากหลักการนี้ทำให้เราทราบว่า เมื่อเราเพิ่มความดันที่จุดไหนของภาชนะปิดก็ตาม ของเหลวทุกจุดภายในภาชนะปิดนี้ก็จะมีความดันเพิ่มขึ้นตามไปด้วย ดังแสดงตัวอย่างในรูปที่ 9.6 ถ้าเราออกแรง F1 กระทำต่อพื้นที่ A1 ทำให้เกิดความดัน P1 ทุกๆจุดในภาชนะปิดก็จะมีความดันเพิ่มขึ้นอีก P1 ถ้าเช่นกัน และถ้า P2 เป็นความดันที่เกิดขึ้นกับพื้นที่ A2 ซึ่งอยู่ในระดับความสูงเดียวกันกับ A1
ดังนั้น P1 = P2
และ
และ
การกระจายความดันในของเหลวที่อยู่ในภาชนะปิด
ระบบไฮโดรลิค
จากหลักของปาสคาลทำให้เรารู้ว่า ถ้า A1 มีขนาดเล็กกว่า A2 เมื่อเราออกแรก F1 จะทำให้เกิดแรงดัน F2 ที่มีขนาดมากกว่า F1 เราใช้หลักการนี้สร้างเครื่องกลผ่อนแรงที่เรียกว่า ไฮโดรลิค (Hydraulic ) ดังแสดงในรูปที่ 9.9 ความดันภายนอกที่กระทำต่อของไหลซึ่งกักตัวอยู่ในภาชนะจะทำให้ความดันเพิ่มขึ้นที่จุดทุกจุดในของไหลด้วยจำนวนเท่ากับความดันที่ใช้นั้น ข้อสรุปนี้อาศัยพื้นฐานบนข้อเท็จจริงที่ว่า ของเหลวอัดตัวไม่ลงดังนั้นแรงใดๆจะถ่ายทอดโดยตรงไปยังผิวภาชนะทุกส่วนกฎข้างต้นนี้รวบรวมขึ้นในกลางคริสต์ศตวรรษที่ 17 โดย พาสคาลซึ่งการค้นพบนี้ทำให้พาสคาลร่ำรวยขึ้น เนื่องจากพาสคาลท้าพนันกับชาวพื้นเมืองฝรั่งเศส ว่าเขาสามารถระเบิดถังเหล้าองุ่นที่แข็งแรงที่สุดด้วยการเทเหล้าองุ่นลงไปเพียงถ้วยเดียว ไม่มีใครเชื่อว่าเขาจะทำได้ ดั้งนั้นการต่อรองจึงสูงมาก ปรากฏว่าเขาสามารถทำถึงเหล้าองุ่นให้แตกได้จริงด้วยการเทเหล้าองุ่นเติมเข้าไปในหลอดเล็กและยาวที่สอดไว้กับถังเหล้าในแนวดิ่ง เพราะว่านักคณิตศาสตร์ชาวฝรั่งเศสผู้นี้ทราบดีว่า ความสูง h ของเหล้าในหลอดจะทำให้ความดันเพิ่มขึ้นจนถึงแตกได้ ประโยชน์สมัยใหม่ของหลักของพาสคาล คือ เบรกไฮดรอลิกและเครื่องอัดไฮดรอลิก เป็นต้น รูปที่ 9.10 แสดงเครื่องอัดไฮดรอลิกซึ่งประกอบด้วยกระบอกสูบ 2 อัน ( พื้นที่ภาคตัดขวาง A1 และ A2 ) บรรจุของเหลวไว้ ออกแรง F1 น้อยๆจะได้แรก F2 ออกมาขนาดมาก
นี่คือหลักพื้นฐานของการทำงานของแม่แรงไฮดรอลิกที่ใช้รถยนต์ตามสถานีบริการน้ำมัน ซึ่งในที่นี้ความดัน
ได้จากการอัดอากาศ เบรกไฮดรอลิกของรถยนต์ก็ได้หลักการเดียวกัน

แรงลอยตัวและหลักของอาร์คิมิดิส(Buoyant force and Archimedes’ principle)[แก้]

สมบัติอย่างหนึ่งของของไหล คือ เมื่อวัตถุจมในของไหล น้ำหนักของวัตถุจะลดลง และบางครั้งวัตถุสามรถลอยบนของไหลได้ นั้นแสดงว่ามีแรงที่ของไหลกระทำต่อวัตถุในทิศทางที่ตรงข้ามกับทิศของน้ำหนักของวัตถุซี่งปรากฏการณ์ดังกล่าวจะสังเกตเห็นได้ชัดในกรณีที่ของไหลกลายเป็นของเหลว และอาร์คิมิดิส (Archimedes) เป็นผู้พบสมบัตินี้ของของไหล และแถลงออกมาเป็น หลักของอาร์คิมิดิส ซึ่งกล่าวว่า “เมื่อวัตถุจมหรือหลอยอยู่ในของเหลว จะถูกแรงเนื่องจากของเหลวกระทำต่อวัตถุ มีทิศทางตรงข้ามกับน้ำหนัก ขนาดเท่ากับน้ำหนักของเหลวที่มีปริมาตรเท่าส่วนที่วัตถุจมในของเหลว หรือเท่ากับน้ำหนักของของเหลวที่ถูกแทนที่ด้วยวัตถุ” เรียกแรงนี้ว่า แรงลอยตัว (Buoyant force: FB) ซึ่งแรงนี้เป็นแรงที่เกิดจากแรงดันลัพธ์เนื่องจากของเหลวกระทำต่อวัตถุที่อยู่ในของเหลว พิจารณาวัตถุทรงกระบอกที่มีพื้นที่หน้าตัด A สูง h จมอยู่ในของเหลวที่มีความหนา p พื้นที่หน้าตัดด้านบนและด้านล่างอยู่ลึกจากผิวของเหลวเป็นระยะ h1 และ h2 ตามลำดับ (จากรูปตัวอย่าง) แรงดันที่ผนังด้านข้าง F3 และ F4 มีขนาดเท่ากันตามทิศทางตรงข้าม แรงดันกดลงบนที่ผิวด้านบน
แรงดันพิ้นที่ผิวด้านล่าง
ซึ่งมีค่ามากกว่าแรงดันด้านบน (F1) ทั้งนี้เนื่องมาจากความดันที่มีค่ามากกว่า จะได้ว่า แรงลัพธ์มีค่าเป็น
แรงที่กระทำต่อวัตถุที่จมอยู่ในของเหลว
จากรูป
 มีทิศขึ้น
เท่ากับ
เมื่อ

เมื่อ mg = น้ำหนักของของเหลวที่ถูกแทนที่ด้วยวัตถุ
จาก FB = น้ำหนักของของเหลวที่ถูกแทนที่ด้วยวัตถุ
V่jom = ปริมาตรของวัตถุที่จมในของเหลว(m3)
นั่นคือ

ความตึงผิว(Surface Tention)[แก้]

ในธรรมชาติเราเคยเห็นแมลงยืนหรือเดินบนผิวน้ำได้ บางครั้งเราสามารถทำให้เข็มเย็บผ้า หรือใบมีดโกนที่มีความหนาแน่นมากกว่าน้ำ ลอยอยู่บนน้ำได้เช่นกัน และถ้าสังเกตหยดของเหลวเล็กๆที่มักมีลักษณะเป็นทรงกลมหรือหยดน้ำค้างบนใบไม้ก็มีลักษณะเป็นทรงกลม แม้แต่ฟองสบู่ก็มีลักษณะเป็นทรงกลม การที่เป็นเช่นนี้เป็นเพราะว่าผิวของของเหลวจะมีแรงยึดเหนี่ยวระหว่างโมเลกุลของของเหลวด้วยกัน พยายามยึดผิวของของเหลวให้ตึง (ให้มีพื้นที่น้อยที่สุด) เรียกว่า “แรงตึงผิวของของเหลว”

แรงตึงผิวของของเหลว(Surface force :Fγ)[แก้]

เป็นแรงที่ผิวของของเหลวพยายามยึดผิวหน้าไม่ให้ขาดออกจากกัน มีทิศขนานกับผิวของของเหลว และตั้งฉากกับเส้นขอบภาชนะหรือวัตถุที่ของเหลวสัมผัส ดังรูป
ทิศทางของแรงตึงผิว
แรงตึงผิวเกิดจากแรงดึงดูดระหว่างโมเลกุล ถ้าเป็นแรงดึงดูดระหว่างโมเลกุลชนิดเดียวกันเรียกว่า แรงเชื่อมติด (Cohesive force, โมเลกุลของเหลวกับของเหลว) แต่ถ้าเป็นแรงดึงดูดระหว่างโมเลกุลต่างชนิดกันเรียกว่า แรงยึดติด (adhesion > cohesion) ดังรูปตัวอย่าง ผิวน้ำจะเว้าลงไป ทำให้มุมสัมผัส คือ θ กางน้อยกว่า 90o เมื่อแรงยึดติดมากกว่าแรงเกาะติด เช่น ผิวของปรอท (cohesion > adhesion) ดังรูปตัวอย่าง ผิวปรอทจะโค้งนูนขึ้น ทำให้มุมสัมผัส คือ θ กางมากกว่า 90o แรงตึงผิวของของเหลวจะมีทิศขนานกับผิวของของเหลวและตั้งฉากกับเส้นขอบที่ของของเหลวสัมผัส ดังแสดงในรูป
ผิวน้ำ,ผิวปรอท,ทิศทางของแรงตึงผิว
ความตึงผิว เป็นสมบัติของของของเหลวที่พยายามยึดผิวหน้าของเหลวให้มีพื้นที่ผิวน้อยที่สุด มีค่าเท่ากับอัตราส่วนระหว่างแรงตึงผิว ความยาวเส้นขอบของรอยฉีกที่ผิวซึ่งสัมผัสกับอากาศ (1) ดังรูปตัวอย่าง
การคำนวณหาคววามตึงผิว
โดยมี γ เป็นความตึงผิว F คือแรงดึงผิว 1 คือ ความยาวเส้นขอบ จากรูปภาพตัวอย่าง เมื่อใช้แรง F ดึงขอบลวดซึ่งยาว 1 ซึ่งเลื่อนได้ ทำให้ผิวของเหลวที่เป็นแผ่นฟิล์มฉีกขาด เนื่องจากผิวที่สัมผัสอากาศมีสองหน้า ดังนั้น รอยฉีกยาวรวม 21 ดังนั้นจะได้ความตึงผิวเป็น
ความตึงผิวจะขึ้นอยู่กับชนิดและอุณหภูมิของของเหลว ดังภาพ สำหรับความตึงผิวของของเหลวชนิดหนึ่งจะมีค่าเปลี่ยนไปเมื่อมีสารอื่นเจือปน เช่น น้ำเกลือ น้ำฟองสบู่ จะมีค่าความตึงผิวน้อยกว่าน้ำ การซึมตามรูเล็ก (Capillarity) เป็นปรากฏการณ์เนื่องจากความตึงผิวของของเหลว เมื่อจุ่มหลอดเล็กหรือท่อเล็ก (Capillarity) ลงในของเหลวทำให้ของเหลวในหลอดมีระดับสูงกว่าหรือต่ำกว่าผิวของเหลว ดังรูปตัวอย่าง ทั้งนี้เป็นผลเนื่องมาจากแรงตึงผิวของของเหลว ปรากฏการณ์นี้ที่เกิดในธรรมชาติได้แก่ การลำเลียงน้ำของราก, น้ำใต้ดิน การซับน้ำของกระดาษชำระ
ผิวของน้ำและผิวของปรอท
จากรูปภาพ แรงตึงผิว Fγ ทำมุม θ กับผนังชนะจะได้องค์ประกอบของแรง Fγ ในแนวดิ่ง Fγ cosθ ซึ่งมีขนาดเท่ากับน้ำหนักของของเหลวในหลอดเหนือผิวของเหลวเพราะของเหลวอยู่ในสภาพสมดุล
Fขึ้น=Fลง
∴FγCosθ= 
Fγ = /Cosθ = (ρπR2 hg)/Cosθ
ความตึงผิว
=

การหาความดันภายในฟองสบู่หรือหยดของเหลวจากความตึงผิวของของเหลว[แก้]

พิจารณาฟองสบู่มีรัศมี R ความตึงผิว γ ความดันอากาศภายในฟองสบุ่ P และความดันภายนอกคือ ความดันอากาศ Pa ดังรูป
แรงที่กระทำต่อหยดของเหลว
เมื่อผ่าฟองสบู่ แรงตึงผิวมีทิศขนานกับผิวฟองสบู่มีผิวสัมผัสกับอากาศ 2 ผิว คือ ผิวนอกและผิวใน ความยาวของผิวสัมผัสเป็นรูปวงกลม จะได้
Fγ===
แต่แรงดัน
FP=πR2
เมื่อฟองสบู่อยู่ในสภาพสมดุลแรงทั้งสองมีขนาดเท่ากันแต่ทิศตรงข้าม จะได้
(P - Pa)πR2 =
สำหรับหยดของเหลว ผิวที่ขาดจะมีผิวนอนเพียงผิวเดียว
เมื่อ P = ความดันภายในของของเหลวทรงกลม (Pa)
Paความดันบรรยากาศ (Pa)
γ= ความตึงผิวของเหลว (N/m)
R=รัศมีของหยดของเหลวหรือฟองสบู่ (m)

สมบัติทางอุณหพลศาสตร์ของของไหล[แก้]

ความสัมพันธ์ของสมบัติในระบบวัฏภาคเนื้อเดียว[แก้]

จากกฎข้อที่หนึ่ง สำหรับระบบปิดที่มีสาร n โมล
ในกรณีพิเศษสำหรับกระบวนการที่ผันกลับได้ จะเขียนสมการข้างต้นได้ว่า
จากสมการนิยามของงานและเอนโทรปี จะได้
 และ
เมื่อผนวกเข้ากับสมการข้างต้น จะได้
 (1)
โดยที่ U , S และ V คือ ค่าพลังงานภายใน เอนโทรปี และปริมาตรซึ่งเป็น intensive property (มีหน่วยต่อโมล) จะเห็นได้ว่าสมการนี้เป็นความสัมพันธ์ระหว่างสมบัติทางอุณหพลศาสตร์ และสมบัติเหล่านี้มีค่าขึ้นอยู่กับสภาวะเพียงเท่านั้น โดยไม่ขึ้นอยู่กับเส้นทางของกระบวนการ ดั้งนั้น ถึงแม้ว่าสมการนี้จะพัฒนามาจากกระบวนการที่ผันกลับได้ แต่เราสามารถใช้สมการนี้กับกระบวนการใดๆก็ได้ตราบเท่าที่ระบบเป็นระบบปิดซึ่งมีมวลสารคงที่
สมการข้างต้นแสดงความสัมพันธ์ระหว่าง P,V,T,U และ S ซึ่งนอกจากสมการนี้แล้ว ยังมีสมการในลักษณะเดียวกันที่พัฒนาขึ้นมาสำหรับสมบัติอื่นๆ ทางอุณหพลศาสตร์ โดยเริ่มจากนิยามของพลังงานในรูปแบบอื่นๆ ดังนี้
เอนทัลปี
พลังงานเฮล์มโฮลทซ์ (Helmholtz energy)
 (2)
พลังงานกิบส์ (Gibbs energy)
 (3)
พิจารณาสมการ
 เมื่อคูนด้วย n ตลอดทั้งสมการ จะได้
เมื่อดิฟเฟอเรนชิเอทสมการข้างต้นจะได้
หากแทน d(nU)ด้วยค่าสมการที่ 1 จะได้
 (4)
ในทำนองเดียวกันถ้ากำจัด d(nU) ออกจากสมการที่ 2 (ภายหลังจากที่คูณด้วย n แล้วทำการดิฟเฟอเรทชิเอท)โดยใช้สมการที่ 1 จะได้
 (5)
และในลักษณะเช่นเดียวกันนี้ หากทำการดิฟเฟอเรนชิเอทสมการที่ 3 ที่คูณด้วย n ตลอดทั้งสมการ แล้วกำจัดพจน์ d(nU) ออกโดยใช้ค่าจากสมการที่ 4 ข้างต้น จะได้
 (6)
สมการที่ 1 ,4 ,5 และ 6 สามารถเขียนให้อยู่ในรูปต่อหน่วยโมลหรือหน่วยมวลสารได้ ดังต่อไปนี้
 (7)
 (8)
 (9)
 (10)
สมการที่ 7-10 เรียกว่าเป็นสมการความสัมพันธ์ของสมบัติพื้นฐาน (fundamental property relation) ซึ่งใช้สำหรับของไหลเนื้อเดียวที่มีองค์ประกอบคงที่ สมการกลุ่มนี้สามารถใช้ในการพัฒนาสมการความสัมพันธ์ของสมบัติทางอุณหพลศาสตร์ที่สำคัญอีกชุดหนึ่ง โดยพิจารณาสมการกลุ่มนี้ในลักษณะเดียวกันกับ
การดิฟเฟอเรนชิเอทฟังก์ชัน F=F(x,y) ดังนี้
หรือ
 (11)
โดยที่
 และ
ถ้าดิฟเฟอเรนชิเอทสมการข้างต้นอีกครั้ง จะได้
พจน์ทางขวามือของสมการทั้งสองนี้มีค่าเท่ากัน ดังนั้นจะได้ว่า
 (12)
ดังนั้นหากเราเทียบรูปสมการที่ 7-10 กับสมการที่ 11 จะสามารถเขียนความสัมพันธ์ในลักษณะเดียวกันกับสมการที่ 12 สำหรับสมบัติทางอุณหพลศาสตร์ต่างๆได้ดังนี้
 (13)
(14)
 (15)
 (16)
สมการที่ 13-16 นั้นเรียกว่า สมการแมกซ์เวลล์ (Maxwell’s equations)
:โดยสรุปจะเห็นว่า สมการความสัมพันธ์ของสมบัติพื้นฐานทางอุณหพลศาสาตร์สามารถนำมาใช้ในการพัฒนาสมการความสัมพันธ์แมกซ์แวลล์ สมการทั้งสองชุดนี้มีความสำคัญต่อการคำนวณหาสมบัติทางอุณหพลศาสตร์ที่ไม่สามารถวัดค่ได้โดยตรงจากการทดลอง ซึ่งจะได้กล่าวถึงต่อไป

เอนทัลปีและเอนโทรปีในรูปฟังก์ชันของอุณหภูมิและความดัน[แก้]

ค่าเอนทัลปีและเอนโทรปีเป็นสมบัติของอุณหพลศาสตร์ที่ไม่อาจวัดได้โดยตรงจากการทดลองแต่สามารถหาได้จากข้องมูลที่วัดได้อื่นๆเช่น อุณหภูมิและความดัน ดังนั้นจึงจำเป็นต้องทราบรูปแบบความสัมพันธ์ทางคณิตศาสตร์ระหว่างเอนทัลปี เอนโทรปี กับอุณหภูมิและความดัน ซึงความสัมพันธ์เหล่านี้สามารถพัฒนาขั้นมาได้หากทราบว่าค่าเอนทัลปีและเอนโทรปีเปลี่ยนแปลงไปตามอุณหภูมิและความดันอย่างไร หรือพัฒนามาจากข้อมูล
 นั้นเอง
ค่า นั้นหาได้จากนิยามของ CP
หรืออาจหาได้จากการหารสมการที่ 8 ด้วย dTแล้วกำจัดให้ความดันคงที่ ซึ่งจะได้
เมื่อรวมสมการข้างต้นทั้งสองเข้าด้วยกัน จะได้
(17)
สำหรับค่าดิฟเฟอเรนเชียลของเอนโทรปีเทียบกับความดันนั้น สามารถหาได้โดยตรงจากสมการแมกซ์เวลล์ (สมการที่ 16)
 (18)
และจากสมการที่ 8 เมื่อหารด้วย dP ที่อุณหภูมิคงที่ จะได้
เมื่อรวมกับสมการที่ 18 จะได้ค่าดิฟเฟอเนเชียลของเอนทัลปีเทียบกับความดันที่เป็นฟังก์ชันของตัวแปรที่สามารถวัดค่าได้ทั้งหมด
 (19)
เมื่อเรากำหนดให้ Hกับ S เป็นฟังก์ชันของอุณหภูมิและความดัน (สำหรับระบบที่เป็นสารบริสุทธิ์ในวัฏภาคเดียว ซึ่งมีค่า degree of freedom เท่ากับ 2 นั้น เราสามารถคำนวณสมบัติต่างๆ ของระบบได้จากตัวแปร 2 ตัว ซึ่งในที่นี้จะเลือกใช้อุณหภูมิและความดัน) ดังนี้
 และ
เราสามารถเขียนให้อยู่ในรูปดิฟเฟอเรนเชียว ได้โดยตรงจากสมการแมกซ์เวลล์ (สมการที่ 16)
และ
เมื่อแทนสมการที่ 17 และ 19 ลงในสมการข้างต้น จะได้
(20)
และ
(21)
สมการข้างต้นนี้คือสมการแสดงความสัมพันธ์ของเอลทัลปีและเอนโทรปีในรูปของอุณหภูมิและความดันความสัมพันธ์เหล่านี้มีประโยชน์ต่อการวิเคราะห์ทางอุณหพลศาสตร์ของกระบวนการต่างๆ ทั้งนี้การประยุกต์ใช้สำหรับกระบวนการไหลอย่างต่อเนื่องและคงตัวจะได้อธิบายได้อย่างละเอียดในบทต่อไป

พลังงานภายในในรูปฟังก์ชันของความดัน[แก้]

เมื่อดิฟเฟอเรนชิเอทสมการ
 จะได้
และจากสมการที่ 19 สามารถเขียนสมการข้างต้นให้อยู่ในรูปสมการความสัมพันธ์ระหว่างพลังงานภายในกับความดัน ดังนี้
(22)

เอนทัลปีและเอนโทรปีที่สภาวะอุดมคติ[แก้]

ค่าสัมประสิทธิ์ของ dT และ dP ในสมการที่ 20 และสมการที่ 21 นั้น หาได้จากค่า CP และจากข้อมูล PVT ซึ่งในกรณีของแก๊สอุดมคติความสัมพันธ์ของ PVT เป็นดังนี้
เมื่อแทนค่าสมการเหล่านี้ลงในสมการที่ 20 และสมการที่ 21 จะได้
(23)
 (24)
โดนสัญลักษณ์ ig หมายถึงค่าสำหรับแก๊สในอุดมคติ

เอนทัลปีและเอนโทรปีสำหรับของเหลว[แก้]

จากสมการที่ 18-20 เมื่อเปลี่ยนพจน์
ให้อยู่ในรูปของ volume expansivity (β) และเปลี่ยน
ให้อยู่ในรูปของ isothermal compressibility (K) ตามนิยามในสมการ จะได้
 (25)
 (26)
 (27)
และเมื่อแทนพจน์(∂V⁄∂T)P ในสมการที่ 20 กับสมการที่ 21 ให้อยู่ในรูปของ volume expansivity จะได้
 (28)
 (29)
เนื่องจากค่า β และ κ ไม่ขึ้นกับความดันของของเหลวมากนัก การอินทิเกรตสมการที่ 28 และ 29 จึงสมารถสมมุติให้ค่าเหล่านี้เป็นค่าคงที่ได้ โดยนิยมใช้ค่าเฉลี่ยตลอดช่วงความดันมาใช้ในการคำนวณ

พลังงานภายในและเอนโทรปีในรูปของฟังก์ชันอุณหภูมิและปริมาตร[แก้]

พลังงานภายในและเอนโทรปีอาจเขียนให้อยู่ในรูปของฟังก์ชันอุณหภูมิและปริมาตรได้ เมื่อทราบค่า
 และ
สำหรับพจน์
 และ
 นั้นสามารถหามาได้จากสมการ 7
 และ
จากนิยามของความจุความร้อนเมื่อปริมาตรคงที่ตามสมการที่ 2 จะสามารถเขียนสาการแรกได้เป็น
 (30)
และจากสมาการที่ 15 จะเขียนสาการที่สองได้เป็น
 (31)
ถ้าเขียนพลังงานภายในและเอนโทรปีในรูปฟังก์ชันของอุณหภูมิกับปริมาตร หรือ U = U(T,V) และ S =S(T,V) และทำการดิฟเฟอเรนชิเอทจะได้
 และ
เมื่อทราบพจน์ partial derivative ในสมการข้างต้นด้วยค่าจากสมการที่ 2 ,30,31 และ 15 จะได้
 (32)
 (33)
ซึ่งสมการทั้งสองสมการนี้แสดงความสัมพันธ์ระหว่างพลังงานภายในและเอนโทรปีกับอุณหภูมิและปริมาตรของของไหล
จากสมการที่ 3 ในกรณีที่การเปลี่ยนแปลงสภาวะเกิดขึ้นที่ปริมาตรคงที่จะเขียนได้ว่า
 (34)
ดังนั้นจึงสามรถเขียนสมการที่ 32 และ 33 ไดเป็นอีกรูปแบบหนึ่งคือ
 (35)
 (36)
เเหล่งที่มา : https://th.wikipedia.org/wiki/พลศาสตร์ของไหล